Defense Media Network

Boeing and the International Space Station

“We also conducted simulations at Boeing’s Software Integration Laboratory in Houston. During the testing, we did find that some corrective actions were necessary for driving the software on the space station. Sometimes organizations can interpret requirements differently and we are here to make sure everyone is on the same page.”

On March 11, 2009, Space Shuttle Discovery (STS-119) delivered the last major Boeing-built element – the Starboard 6 (S6) truss, vital to the proper functioning of the ISS – and its solar array wings and batteries, completing the U.S. “core” of the station.

The 31,000-pound, 45-foot-long S6 truss segment spent more time on the ground than any other single ISS element. It arrived at NASA’s Kennedy Space Center, Florida, (where Boeing is prime contractor for payload processing) on Dec. 17, 2002. It was assembled and mated to its solar arrays and batteries in the Space Station Processing Facility, with a Boeing team regularly maintaining, cleaning, and inspecting it for corrosion. Boeing also provided the fluid support for ammonia operations used to cool the hardware’s electrical components, placed the truss into its payload canister, and transported the element to the launch pad.

The retirement of the Space Shuttle in 2011 made it impossible to launch or recover any further large components. That required a complete overhaul of the way the space station had been designed and built, which included large elements intended to be returned to Earth for repair, then taken back to the ISS by the shuttle.

In November 2009, more than 14 tons of large spare parts for the station’s electrical, plumbing, air conditioning, communications, and robotics systems – 15 elements in all, 12 of which were built by Boeing – were transported to the ISS by Space Shuttle Atlantis (STS-129) in the shuttle program’s largest spare parts mission.

“This mission is very important to ensuring the ISS has maximum operational flexibility with a complete set of critical Orbital Replacement Units before the Space Shuttle fleet retires,” Joy Bryant, vice president and program manager for Boeing’s International Space Station Program, said at the time. “The station has exceeded our expectations from a life-cycle design standpoint. These replacement components will ensure the station can remain operational for many years to come as the U.S. National Laboratory ramps up its science activities.”

artist concept of Starliner docking with ISS web

An artist’s conception depicts Boeing’s CST-100 Starliner spacecraft docking to the International Space Station. NASA image

While it will not match the shuttle’s cargo capacity, Boeing is gearing up to launch America’s first manned mission to the ISS since the shuttle’s retirement – the CST-100 Starliner commercial crew spacecraft. The first mission is slated to take place in mid-2019, and will be commanded by Boeing’s Chris Ferguson, who led the final Space Shuttle mission.

Also onboard will be two NASA astronauts, retired U.S. Air Force Col. Eric Boe, making his third spaceflight, and Marine Corps Lt. Col. Nicole Mann, an F/A-18 fighter pilot on her first mission into space as the first female astronaut to fly a new spacecraft on its inaugural mission.

Prev Page 1 2 3 4 5 Next Page

By

J.R. Wilson has been a full-time freelance writer, focusing primarily on aerospace, defense and high...